Session 1

- A. Eva Buckner Evaluation of the In2Care Mosquito Trap against *Culex quinquefasciatus* mosquitoes under semi-field conditions
 - a. In2Care Trap
 - i. Aedes albopictus and Ae aegypti are difficult to control using traditional measures
 - 1. Adulticide resistance is documented worldwide
 - 2. Larval habitats are cryptic
 - 3. Skip ovipositing a few eggs laid at a multiple of sites
 - ii. In2Care trap contains pyriproxyfen (PPF) and an entomopathogenic fungus
 - iii. Mosquitoes entering trap pick up both
 - 1. Spread PPF to other larval sites
 - 2. Die from fungus
 - iv. Trap evaluation JAMCA, 33(3):193-199, 2017
 - 1. Trap attractiveness
 - 2. PPF autodissemination
 - 3. Adulticidal impacts
 - v. Field trial -JAMCA, 37(4):000-000, 2021 (not yet published)
 - 1. How can the trap fit into operational mosquito control?
 - 2. Can the trap replace conventional treatment?
 - 3. Difference between treatments was significant for eggs and larvae.
 - b. Does the trap work for *Culex quinquefasciatus*?
 - i. Trap was reported to be attractive to quincs
 - ii. Quincs lay egg rafts no skip ovipositing
 - 1. More selective in choosing an oviposition site
 - 2. May visit several potential sites before ovipositing
 - iii. Demonstrated to disseminate lethal doses of PPF in lab
 - iv. Results
 - 1. Attractiveness
 - a. Mean % rafts laid in trap vs flowerpot
 - b. Significantly more egg rafts laid in trap
 - 2. PPF autodissemination
 - a. Emergence inhibition
 - b. Significantly higher than control
 - c. Also saw pupicidal effects
 - 3. Effect of spores on adult survivorship
 - a. No significance difference in adult survivorship between treatment and control
 - b. Potential issues with results

- i. Low adult recapture rate
- ii. Low temperature issues
- c. Forced exposure showed that treatment replicates had significantly lower survivorship compared to controls
- v. In2Care trap may be an effective control tool against quincs, but field trials are needed
- B. Kristin Reichardt Job Spotlight: Vector Surveillance Coordinator at Richmond County Mosquito Control
 - a. What we are
 - i. Mosquito Control program
 - ii. Part of County Public Health
 - iii. Part of the State Public Health system
 - b. IMM program
 - c. Both tick and mosquito surveillance
 - i. Arboviral testing
 - ii. Pathogen surveillance
 - iii. Insecticide resistance testing
 - d. Partnering with:
 - i. Emory tick pathogen testing
 - ii. UGA mosquito testing
- C. Bobby Moulis Chatham County Mosquito Control Overview
 - a. Coastal county
 - b. 3 river systems drain inland areas
 - c. Dredge spoils
 - d. Mosquito species
 - i. 2 saltmarsh species
 - ii. 41 freshwater species
 - iii. 4 species make up the majority of the trap catch
 - 1. Cx nigripalpus
 - 2. Oc taeniorhynchus
 - 3.
 - e. Complaints
 - i. Call office
 - ii. QAlert system
 - f. Rave Alert
 - i. Notification of spray missions
 - ii. Other
 - g. Renovations
 - i. Automated storm shutters
 - ii. Interactive eMap replaced the paper map with push pins
 - h. Units
 - i. ULV ground treatments
 - 1. Used to use resmithrin
 - 2. Transitioning to deltamethrin

- ii. Helicopter spraying
 - 1. Larvicide
 - a. Altosand
 - b. Mixed on site
 - 2. ULV adulticide (~98%)
- iii. Surveillance
 - 1. Traps
 - a. CDC light traps
 - b. Gravid traps vital to WNV monitoring
 - c. Exit trap (sentinel chicken cages)
 - 2. Sentinel chickens
- iv. Ground larviciding
- D. Nancy Hinkle Georgia is a Spider Wonderland
 - a. More than 800 species in Georgia
 - b. Commonly found in homes
 - i. Southern house spider
 - 1. Color varies
 - 2. Robust legs
 - 3. With legs spread, about the size of a dime
 - 4. Never in a web
 - ii. American house spider
 - 1. Globous abdomen
 - 2. Almost always found in web
 - 3. Cobweb type web
 - iii. Long-bodied cellar spider
 - 1. Spends a lot of time in web
 - 2. Long legs
 - 3. Goes into paroxysms of vibrating when disturbed
 - c. Hunting spiders
 - i. Fishing spider
 - Long legs
 - 2. Jesus spider can walk on water
 - 3. One of the larger spiders in Georgia
 - ii. Wolf spider
 - 1. Often carry spiderlings
 - 2. Active hunters
 - iii. Jumping spiders
 - 1. Large eyes
 - 2. Can have elaborate colorations
 - d. Orb Weavers
 - i. Arrow-shaped microthena
 - ii. Arrowhead spider
 - iii. Spined microthena
 - iv. Yellow marbled orb weaver

- v. Green orb weaver
- vi. Barn spider very common in October in the SE US
- vii. Orchard spider
- viii. Golden silk spider coastal
- ix. Golden garden spider
- x. Joro spider
 - 1. First seen in Georgia in 2013
 - 2. Found off I-85
 - 3. Probably came in on ships
 - 4. Asian spider
 - 5. Produces golden silk
- e. Funnel web spiders
- f. Spiders are beneficial as free pest control

E. Dean Nick Place – UGA College of Agricultural and Environmental Sciences

- a. Missions
 - i. Research
 - 1. Integrative precision agriculture
 - a. Agriculture and technology
 - b. UGA is a top 25 university for IPA internationally
 - c. Partners with the College of Engineering and Franklin College
 - 2. Poultry science #1 program in the country
 - 3. Plant science
 - 4. Regenerative bioscience
 - a. traumatic brain injury
 - b. Stroke
 - 5. Carbon farming and ecosystem health
 - 6. Food safety and technology
 - 7. Nexus of food and health
 - ii. Teaching
 - iii. Extension Outreach
 - 1. 2020 66% increase in digital media distribution
 - 2. 35,000 site visits completed
- b. Size and Scope
 - i. >2700 people at college
 - ii. One of the larger colleges at UGA
- c. Academics
 - i. 1400 undergrads
 - ii. 700 grad students
- d. Scholarships
 - i. \$830,000
 - ii. \$43,000 for undergrad research
 - iii. 92% employment/grad school rate
- e. Related jobs

- i. 59,400 jobs annually
- ii. 2.3% growth
- f. New UGA program
 - i. Rural scholars program recruit and retain high quality rural students
 - ii. 4 students admitted this Fall
 - iii. \$7,000 in scholarships
- g. Critical challenges in Agriculture
 - i. Population growth
 - ii. Food systems
 - iii. Water issues
 - iv. Labor
 - v. Pests and Diseases
 - vi. Food system literacy
 - vii. Public outreach
- F. Industry Spotlight
 - a. Denny Crockett CoDiagnostics
 - i. Molecular diagnostics
 - 1. Mainly PCR tests
 - 2. Many different areas
 - 3. Worldwide distribution
 - ii. Affordable PCR equipment for arboviral testing
 - 1. VectorSmart NA West Multiplex tests
 - a. WNV
 - b. SLE
 - c. WEE
 - 2. VectorSmart NA East Multiplex tests
 - a. WNV
 - b. SLE
 - c. EEE
 - 3. VectorSmart Multiplex tests
 - a. ZIKV
 - b. DEN
 - iii. Working on a test for sentinel chickens and TBDs
 - iv. Easy to read results
 - v. Provide training
 - b. Steve Molnar Target Specialty Products
 - i. Wide range of larvicide products
 - 1. New product Sumilary (PPF)
 - 2. Bti
 - 3. Altosid
 - ii. Adulticides
 - 1. Partnership with Bayer
 - 2. Variety of products
 - iii. Equipment

- 1. Paired up with Leading Edge drones
- 2. A variety of other equipment
- iv. Wide range of services
- c. Jason Conrad Veseris
 - i. Formally UNIVAR
 - ii. Carry same products
 - iii. Sole source provider for In2Care trap
- G. Natasha Agramonte Update on the DeKalb County
 - a. What does a County Public Health Entomologist do?
 - i. Mosquito surveillance
 - ii. Rodent issues
 - iii. Bed bugs
 - b. Seasonal staff
 - c. WNV Surveillance
 - i. Use tackle box gravid traps
 - ii. Hay infusion attractant
 - iii. Set at multiple sites once a week
 - d. Other WNV surveillance tools
 - i. Dead birds
 - ii. Door-to-door educational outreach
 - iii. Investigate mosquito complaints
 - 1. Larvicide
 - 2. Education
 - iv. Can issue a notice of violation or citation if needed
 - v. Larviciding
 - 1. Storm drains
 - 2. Catchment basins
 - 3. Others based on need
 - vi. Nuisance pool complaints
 - e. Other Issues
 - i. Hotels bed bug complaints
 - 1. Inspection of room and adjacent rooms
 - 2. Education
 - ii. Rodents in apartments
 - iii. Restaurants
 - 1. Roaches
 - 2. Rodents
 - 3. Flies
 - iv. Rabies
- H. Kelly Deutsch The Importance of Surveillance
 - a. Why?
 - i. Limited resources
 - ii. Knowledge is power
 - iii. Need to define the problem

- 1. How many species?
- 2. Which are disease vectors?
- 3. Are the economically important?
- 4. Which are the biggest nuisance species?
- iv. How do you get into surveillance
 - 1. Start small are there mosquitoes present
 - 2. Establish a baseline
 - 3. Prevalence in a specific area
 - 4. understanding population trends
 - 5. Determining vector abundance and distribution
 - 6. Justifying your treatment choices
 - 7. Determining if what you are doing is actually effective
- v. Consider the habitat
- vi. Consider the weather and tidal data
- vii. Look at surveillance history
- b. These data will help to justify your program and your budget!
- c. Use your surveillance data
 - i. Determine treatment strategies
 - ii. Determine the best traps to use
- I. Janemarie Hennebelle There's a New Tick in Town
 - a. Asian Longhorned tick was found in Georgia in mid-September
 - b. 17 US State to report the tick
 - c. About the tick
 - i. Presence confirmed by the USDA in 2017, but probably arrived prior to 2010
 - ii. Native to SE Asia
 - iii. Reproduces by parthenogenesis large, concentrated infestations
 - iv. Vector
 - 1. Parasites
 - a. Theileria
 - b. Babesia
 - 2. Bacteria
 - a. Borrelia
 - b. Anaplasma
 - c. and others
 - 3. Viruses
 - a. Powassan
 - b. Khasan
 - c. and others
 - d. Impact on animal health
 - i. Affects growth
 - ii. Causes stress
 - iii. Decreased production
 - iv. Exsanguination and death

- e. Surveillance
 - i. Passive surveillance system
 - 1. NVSL tick kit
 - 2. Sent to Veterinarians throughout Georgia
 - 3. Collaborations with UGA, DNR, and DPH
 - ii. Situation in Georgia
 - 1. Unusual infestation on cow in Pickens County reported
 - a. Local DVM calls GDA
 - b. Treated as a Foreign Animal Disease Investigation
 - 2. Area VMO assigned to investigate
 - a. Site visit
 - b. Collect samples
 - 3. Farm is quarantined
 - 4. Herd plan developed
 - a. Index herd ~70 head
 - b. Treated with 10% permethrin
 - c. Environmental control recommendations
 - i. Bush hog or mow pastures and fields
 - ii. limit livestock access to moist areas
 - iii. Treatment of the environment is tricky
 - 5. Visit adjacent areas
 - 6. Treat cattle where there is potential contact
 - iii. Current situation
 - 1. Only found in Pickens County to date
 - 2. Found on:
 - a. Cattle
 - b. Cat
 - c. Opossum
 - iv. What's next?
 - Share Information with stakeholders
 - 2. Printed material
 - 3. Webinars
 - 4. Outreach/Education
 - 5. Continued active surveillance in Pickens County
- f. This will likely continue to spread in Georgia
- J. Ture Carlson Releasing Mosquitoes
 - a. Carver Village
 - i. Established in 1948 for people of color
 - ii. Release of mosquitoes in mid-50s
 - 1. Was permission asked?
 - 2. Were the mosquitoes infected?
 - a. Yes
- i. Malaria wrong mosquito for malaria
- ii. Yellow fever??

- b. No reported by Army
- b. Military operations
 - i. Weaponizing mosquitoes
 - ii. What needs to be done
 - 1. Rear a lot of mosquitoes
 - 2. Infect them
 - iii. Operation Big Buzz
 - 1. May 1955
 - 2. ~1 million Aedes aegypti
 - a. Loading tests
 - b. Storage tests
 - c. Release tests
 - i. E-14 munitions
 - ii. Dropped by airplane
 - iii. Dispersed up to 2,000 feet
 - d. Simulated attack
 - e. No exact location mention, just rural Georgia
 - iv. Operation Drop Kick
 - 1. 1956
 - a. 600,000 Ae aegypti released at Avon Park, FL
 - b. Released by airplane
 - 2. 1958
 - a. Second drop
 - b. Used helicopters
 - v. Operation Magic Sword
 - http://sonmi.weebly.com/uploads/2/4/7/4/24749526/night_train
 test 64-5 1964.pdf
 - 2. Large operation
 - vi. Mark-Recapture study
 - 1. Near Savannah in 1954
 - a. 2 million radioactive Oc taeniorhynchus released
 - b. Oatland Island
 - 2. 428 recaptured, one 20 miles from the release site
 - 3. Many of these types of studies have been done
 - vii. Releasing mosquitoes for control
 - 1. Wolbachia-infected mosquitoes
 - a. Lower population primary use
 - b. Limit virus transmission
 - c. First release was in 1967 in Burma
 - 2. GM mosquitoes
 - a. Much more recent technique
 - b. Oxitec RIDL
 - i. Started in 2009
 - ii. 5 releases currently

- iii. 2 planned releases
- c. Target Malaria gene drive
- d. Older techniques
 - i. 1968 sterile hybrid due to genetic incompatibility
 - ii. Releases made starting in 1959 Irradiated mosquitoes
 - iii. Chemosterilized mosquitoes

Oct 21, 2021

Session 2

- A. Brantley Russell & Connie Rodgers Georgia Pest Control Association: Benefits of Membership (www.GPCA.org)
 - a. Brantley Russell current president
 - b. Connie Rodgers executive direct
 - c. History
 - i. Started in 1950
 - ii. Currently have 725+ members
 - iii. Advocate for pest control licensing
 - d. Membership benefits
 - i. Learning opportunities
 - ii. Be a voice for the industry
 - iii. Networking
 - iv. Credibility being an approved member increases your credibility with consumers
 - e. Education
 - i. Test preparation
 - ii. 4 major conferences per year
 - iii. Roadshows throughout the State
 - iv. Regional training offering CEUs
 - v. Train the trainer program
 - vi. Now offer virtual training with CEUs
 - f. Referrals website refers to member companies based on zip code
 - g. Information
 - i. BugBytes, e-newsletter
 - ii. PR Corner
 - iii. Publish changes and alerts
 - h. Networking
 - i. Leadership course
 - ii. Help shape policy by participating in committees
 - iii. Marketing materials to help boost local presence
 - i. Giving to the community

- i. Pest Vets raise money for the Veterans Empowerment Organization to benefit homeless veterans and their families
- ii. Hands United assists pest control technicians, PCO, and their families where there is need
- iii. Scholarships
 - Burnett Scholarship provides for higher education for pest control families
 - 2. Russell Scholarship for college students, to encourage the study of entomology and pest control sciences
- j. Summary
 - i. Provide tools for pest control
 - ii. Active in community
 - iii. Make sure pest control maintains high standards
- B. Rick Anglian Update on the Fulton County Mosquito Control Program
 - a. Program runs April-October
 - b. Services offered
 - i. Larvicide storm drains 12,217 treated
 - ii. Backpack treatments
 - 1. Based on complaints
 - 2. Investigated, tip and toss, educate, treat
 - 3. 39 treatments administered
 - 4. First year for ULV treatments
 - iii. Placed surveillance traps
 - 1. Started in July
 - 2. 14-15 Gravid traps placed weekly
 - 3. 2 CDC light traps placed weekly
 - 4. Tested in-house
 - iv. Testing
 - 1. 11 WNV+ at 10 locations
 - 2. Tip and toss campaign within a ¼ mile of positive sites
 - 3. Treated or retreated area catch basins
 - 4. ULV application
 - a. ½ mile radius for 4 weeks
 - b. Got some citizen pushback
 - c. Started a notification system
 - c. Applications are mapped using GIS
- C. Larry Motes (Central Life Sciences) **Bridging the Gap Between Pest Control Operators** and **Public Health Officials**
 - a. Goals
 - i. Better understand our role in vector control
 - ii. Build bridges between PCOs, LCOs, Public Health, Mosquito Control, and beekeepers
 - iii. Increase our knowledge
 - b. Ticks

- i. TickSafety.com
- ii. Most common ticks in Georgia
 - 1. Dermacentor variabilis
 - a. High grasses around homes
 - b. Interesting trend increase in pet ownership due to Covid-19
 - c. Diseases
 - i. RMSF
 - ii. Tularemia
 - iii. Tick paralysis
 - 2. Ixodes scapularis
 - a. Wooded rural areas
 - b. Lyme Disease
 - 3. Amblyomma americanum
 - a. Upland edge habitat
 - b. Diseases
 - i. Alpha-Gal syndrome
 - ii. STARI
- iii. How to protect yourself
 - 1. DEET
 - 2. Permethrin-treated clothing
 - 3. IPM
 - a. Keep grass low and dry
 - b. Keep pes on flea and tick control
 - c. Market trend more yard treatments
 - 4. Problem areas (Shultz and Jordan)
 - a. Leaf and compost piles
 - b. Stacked wood
 - c. Bird feeders
 - d. Damp tall grass and shrubs
- c. Mosquitoes
 - i. How to control mosquitoes
 - 1. For a commercial enterprise, money drives decision making
 - 2. Barrier sprays
 - a. Strengths
 - i. Good return on investment
 - ii. Assists public health control
 - b. Weaknesses
 - i. Applicator education
 - ii. Bee kills
 - c. Need to be aware of chemical trespass issues
 - d. Don't spray blooming plants
 - e. Trend Beecheck technology
 - 3. Google Maps is your friend

- 4. Treat the source
- 5. Educate the public
- 6. Trend drone use increasing
- ii. Trends toward a PCO-friendly format for control products
- iii. Educational materials
- iv. Mosquito-awareness.com
- D. Elmer Gray Larvicide Active Ingredients and Their Role in Integrated Mosquito Management
 - a. IMM techniques have been used in mosquito control long before they were acknowledged
 - b. Parts of IMM
 - i. Education
 - 1. Public
 - 2. Workers
 - ii. Source reduction
 - iii. Surveillance knowledge is power
 - iv. Larviciding requires effort and resources
 - v. Adulticiding
 - 1. Communication is essential
 - 2. Pesticide resistance
 - 3. Non-target issues
 - c. Best case is all the steps are used, but this isn't always possible
 - d. Product vendors are important sources of information and education
 - e. Advantages of larviciding
 - i. Larvae are concentrated in a defined area
 - ii. Larvae are accessible...usually
 - iii. Larvae are susceptible
 - iv. Larviciding is proactive
 - v. Larviciding is more acceptable to the public
 - vi. Larviciding reduces risk to pollinators
 - f. Choosing a larvicide
 - i. Wide variety of formulations
 - ii. 4 types of active ingredients with very different modes of action*
 - 1. IGR -absorbed and ingested, larvae and pupae do not die immediately
 - a. (S)-methoprene is a natural juvenile hormone first identified in 1967
 - b. Pyriproxyfen newer reduced risk pesticide (EPA) currently registered in Georgia
 - 2. Microbial based must be ingested
 - a. Bti
- i. Discovered in 1976 in Israel
- ii. Endotoxins are activated by dipteran larvae with high gut pH

- iii. No resistance has been seen
- b. Bacillus sphaericus
 - i. Isolated in 1964 in California
 - ii. Some recycling is seen in the environment
- c. Combination formulations are available
- 3. Surface oils physical barrier
 - a. Effective pupacide
 - b. Effectiveness limited to larvae and pupae that breathe at the water surface
- 4. Spinosad Biological neurotoxin
 - a. Discovered in 1982 and extracted from sample in 1986
 - b. Identified as reduced risk by EPA
 - c. Approved for use in organic production
- iii. Chose formulation and active ingredient based on habitat and mosquito population present
- iv. Product rotation remains an important aspect of mosquito control
- E. Steph Bellman Emerging Tickborne Disease: A Study of Heartland Virus in Georgia Ticks
 - a. Tickborne diseases are an increasing burden in the US
 - b. Heartland Virus
 - i. Discovered in Missouri in 2009
 - ii. Presentation similar to Ehrlichia
 - 1. Treated with doxycycline
 - 2. Treatment did not work
 - 3. No treatment except supportive therapy
 - 4. Disease can be severe
 - iii. Heartland is not notifiable to the CDC
 - 1. More than 50 cases have been reported to date
 - 2. Probably underreported
 - iv. RNA virus
 - v. Onset May-September
 - vi. Has been found in lone star ticks but is similar to a virus transmitted by Asian longhorned ticks
 - vii. Transmission cycle https://www.researchgate.net/figure/Proposed-transmission-transmission-model-for-the-Heartland-virus-Proposed-transmission-cycle-for-HRTV fig3 327658745
 - c. Heartland virus in Georgia
 - i. serological data from white tailed deer from 2001
 - ii. Human case reported in 2005
 - iii. Emory Study
 - 1. Sampling
 - a. 2018 flag sampling at 26 sites near seropositive deer and human case locations
 - b. Sites were narrowed down to 2 sites in 2019

- c. Sampling occurred between April to October
 - i. Adults active from April through June
 - ii. Nymphs most active from May through October
 - iii. Larvae active late summer
- d. Sampling was done approx. weekly
- 2. Ticks collected
 - a. Primarily Amblyomma americanum at all stages
 - b. A few other common species were found
- 3. PCR were run for Heartland and Bourbon viruses
 - a. 3 HRTV+ pools were detected
 - b. MIR=0.46 per 1000 in 2019
 - c. No Bourbon virus was detected
- 4. Did genomic and phylogenetics on the 3 positive pools
- 5. Conclusions
 - a. 2 positive pools in April suggest overwintering of HRTV
 - b. Intend to continue surveillance
 - c. Currently collaborating with Richmond County
- F. Dan Suiter Structural Entomology at UGA
 - a. Regulated by a different office at GDA than commercial
 - i. http://agr.georgia.gov/structural.aspx
 - ii. All structural applicators must be licensed
 - iii. 3 basic categories
 - b. Center for Urban Agriculture resources
 - i. Getting the Best of Pests webinars
 - 1. CEUs for a number of States
 - 2. Audience
 - a. Commercial and private applicators
 - b. PCOs
 - ii. Webinar recordings housed at GTBOP.com under archives
 - 1. 50 recordings
 - 2. 11 that provide 1 hour of CEU credit in CAT 41
 - 3. Must watch at a County Extension agents office (1-800-ASK-UGA1)
 - iii. In Person trainings
 - 1. Bed bugs
 - 2. Home pest control
 - 3. Termites
 - c. What else is going on in Griffin?
 - i. Joro spider "invasion"
 - ii. "Murder" hornets
 - iii. Fire ant control
 - 1. Baiting around a mound when it is cool
 - 2. Mound treatment
 - iv. Two new ant pests
 - 1. Asian needle ant

- First found in Decatur in 1984
- b. Recent population explosion
- c. Nests in and under yard debris
- 2. Tawny crazy ant
 - a. No mating flights
 - b. Multiple queens
 - c. First found in Albany in 2013
 - d. Currently only found in south Georgia
 - e. Hasn't been reported
- G. Industry Spotlight
 - a. ADAPCO Trey English
 - i. New learning platform ADAPCO Vector Lab (AVL)
 - 1. Multimedia videos
 - 2. Self-paced
 - 3. Online
 - 4. Can earn CEUs
 - 5. Inexpensive
 - ii. Trainings have been in person in the past
 - iii. Sign up on MyADAPCO.com
 - iv. Courses available
 - Mosquito Biology Classification, morphology, life cycle, and common mosquitoes found in the U.S.
 - 2. Mosquito Surveillance Trap types and methods.
 - 3. Pesticide Safety and Understanding the Label What is a hazard, handling pesticides safely, PPE, and reading the label.
 - 4. **Mosquito Identification** Using a taxonomic key and identifying larval and adult mosquitoes.
 - v. 1 CEU credit per course
 - b. AMGUARD Derek Wright
 - New branding for AMVAC
 - ii. Non-crop mosquito and vector portion
 - iii. Primarily Trumpet and Dibrom for aerial applications
 - iv. Stewardship updates
 - 1. New labels
 - 2. Available at AMGUARD site or ADAPCO site
 - c. Vector Disease Control International Broox Boze
 - i. <u>www.vdci.net</u>
 - ii. Full-service mosquito control company
 - iii. Primarily known for aerial applications
 - iv. Added drones to fleet in 2020
 - 1. Liquid application system
 - 2. Granular application system
 - v. Drone webinar Oct 28, 2021
- H. Rosmarie Kelly Mosquito Surveillance in the Time of COVID

- I. Caroline Efstathion Practical Bottle Bioassay Techniques
 - a. Broad entomological/microbial/molecular background
 - b. Currently VDCI Southeast Regional Director
 - c. Resistance monitoring
 - i. Ways to mitigate
 - 1. IMM
 - 2. Detection and monitoring
 - 3. Management of resistant populations
 - ii. Strategies
 - 1. Lowest effective dose
 - 2. Less frequent application
 - 3. Rotate chemicals
 - 4. Use chemicals with different modes of actions when larviciding and adulticiding
 - 5. Localized treatments vs areawide
 - iii. Bottle bioassays
 - 1. Provide a baseline
 - 2. Detect resistance early
 - 3. Continuous monitoring
 - 4. How practical is it?
 - a. What are your goals/questions?
 - i. Where is there insecticide resistance?
 - ii. Are chemicals in use still effective?
 - iii. What chemicals will be most effective in an emergency?
 - iv. Monitoring
 - b. What species?
 - i. Pest vs vector
 - ii. How easy are eggs or larvae to collect in large enough numbers to test?
 - iii. Ability to blood feed susceptible strains for calibration
 - iv. Lab reared vs wild caught
 - 1. Lab reared
 - a. Time consuming
 - b. Need space and equipment
 - c. Require care
 - 2. Wild caught
 - a. Mixed species
 - b. Mixed ages
 - c. Mixed physiological states
 - d. No way to calibrate
 - c. What resources?
 - i. CDC diagnostic times are available

- ii. Bottle Bioassay kits available for free
- iii. Lab space
- iv. Enough time and people to collect eggs or larvae
- d. Budget
- e. Personnel
- f. Chemicals
- g. Time available for testing
- 5. Using the data
 - a. Places to test include:
 - i. Areas of disease concern
 - ii. How often area is sprayed
 - iii. Population numbers
 - iv. Flight range
 - b. Needs to be done routinely
 - c. Develop written protocols
 - i. Base on the CDC protocols
 - ii. Provides consistency
 - d. Active ingredient vs formulated product
 - Formulated product can mask signs of resistance development
 - ii. Field efficacy trials help determine if formulated product is failing
 - e. Have a plan for using your results and adjusting your IMM program

Business Meeting

- A. Reading of minutes
- B. Treasurer's report ~\$32600
- C. Officer elections
 - a. President: Laura Peatyb. VP: Tiffany Nguyen
 - c. Secretary-Treasurer: Misty McKanna
 - d. Directors
 - i. 1-Year: Doug Nelson
 - ii. 2-Year: Caroline Efstathion
 - iii. 3-Year: Natasha Agramonte
 - e. Sustaining Board Member: Jason Conrad
 - f. Past President: Allen Hillman
 - g. Public Health Liaison: Rosmarie Kelly
 - h. Extension Liaison: Elmer Gray
- D. Presentation of Past President award